Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst.

نویسندگان

  • Qiangu Yan
  • Fei Yu
  • Jian Liu
  • Jason Street
  • Jinsen Gao
  • Zhiyong Cai
  • Jilei Zhang
چکیده

A continuous process involving gasification, syngas cleaning, and Fischer-Tropsch (FT) synthesis was developed to efficiently produce synthetic aviation turbine fuels (SATFs). Oak-tree wood chips were first gasified to syngas over a commercial pilot plant downdraft gasifier. The raw wood syngas contains about 47% N(2), 21% CO, 18% H(2), 12% CO(2,) 2% CH(4) and trace amounts of impurities. A purification reaction system was designed to remove the impurities in the syngas such as moisture, oxygen, sulfur, ammonia, and tar. The purified syngas meets the requirements for catalytic conversion to liquid fuels. A multi-functional catalyst was developed and tested for the catalytic conversion of wood syngas to SATFs. It was demonstrated that liquid fuels similar to commercial aviation turbine fuels (Jet A) was successfully synthesized from bio-syngas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Combustion of Syngas

The catalytic combustion of syngas/air mixtures over Pt has been investigated numerically in a channel-flow configuration using 2D steady and transient computer codes with detailed hetero-/homogeneous chemistry, transport, and heat transfer mechanisms in the solid. Simulations were carried out for syngas compositions with varying H2 and CO contents, pressures of 1 to 15 bar, and linear velociti...

متن کامل

Novel Catalysts Synthesis and Evaluation for Synthetic Fuels

Synthetic fuels are based on syngas, a mixture of CO and H2, which can be obtained from natural gas or gasification of coal and biomass. Synthetic fuels are a great drop-in fuel alternative to fossil fuels as they can help meet global energy needs, ensure energy security and reduce the carbon footprint. Mobil pioneered a revolutionary route for synthetic fuel synthesis with two stages: (1) synt...

متن کامل

Methane oxy-steam reforming over a highly efficient Ni/Al2O3 nanocatalyst prepared by microwave-assisted impregnation method

An alumina-supported nickel catalyst was prepared by impregnation of Ni2+ solution onto mesoporous alumina under microwave irradiation (denoted as M-Ni/Al2O3). For comparison, a catalyst with the same nickel content was prepared by conventional impregnation method (denoted as UM-Ni/Al2O3). Both M-Ni/Al2O3 and UM-Ni/Al2O3 catalysts were applied to the syngas (H2 + CO) production by methane oxy-s...

متن کامل

Effects of Feed Composition and Feed Impurities in the Catalytic Conversion of Syngas to Higher Alcohols over Alkali-Promoted Cobalt–Molybdenum Sulfide

Alkali-promoted cobalt molybdenum sulfide is a potential catalyst for the conversion of syngas into higher alcohols. This work is an investigation of how the feed composition influences the behavior of the sulfide catalyst. In a sulfur-free syngas the production of higher alcohols is observed to be optimal with an equimolar mixture of CO and H2 in the feed, while the methanol production benefit...

متن کامل

Comparison of Vibrations and Emissions of Conventional Jet Fuel with Stressed 100% SPK and Fully Formulated Synthetic Jet Fuel

The rapid growth of the aviation sector around the globe has witnessed an overwhelming impact on fossil fuel resources. With the implementation of stricter environmental laws over emissions by conventional jet fuels, growing demand for research on alternative fuels has become imperative. One-hundred percent Synthetic Paraffinic Kerosene (SPK) and Fully Formulated Synthetic Jet Fuel have surface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2013